**Question 1 : Differentiate with respect to x:**f(x)=(ax3+bx)

A. 3ax2+b

B. 3a−b

C. 3×2+1

D. ax2+b

The answers No 1 question is A. 3aX^{2} + b

**Question 2 : Evaluate the limit**limx→∞6e4x−e−2x8e4x−e2x+3e−x

A. ½

- 3/5

- ¾
- ¼

Answer the question above is C. ¾

**Question 3 : Find the derivative**f(x)=2×2−16x+35 **by using first principle**

A. 2x−8

B. x+16

C. 3x−5

D. 4x−16

Answer to question 3 E. 4x−16

**Question 4 : Evaluate the limit **lim h→0 2(−3+h)2−18

h

- 8
- 14
- 6
- 12

Answer to question 4 is D. 12

**Question 5 : Given**2×5+x2−5t2** find**dydxdydx**by using the first principle**

A. 6t2+10t−3

- c−t−2+8t−3

C. 6t+7t−3

E. t2+5t−3

Answer to Question 5 is A. 6t2+10t−3

**Question 6 : Evaluate the limit**limx→−∞x2−5t−92×4+3×3

A. 4

B. 2

C. 0

d. 1

Answer to question 6 is A. 4

**Question 7 : Differentiate**y=3√(x2)(2x−x2) **with respect to x**

A. y=10×233+8×533

B. y=5×233−4×533

C. y=5×233+4×533

D. y=10×233−8×533

Answer to question 7 is C. y=5×233+4×533

**Question 8 : Evaluate the limit**limt→4t−√(3+4)4−t

A. −5/8

B. −1/8

C. 34

D. −3/8

Answer to question 8 is A. −5/8

**Question 9 : Given**y(x)=x4−4×3+3×2−5xy(x)=x4−4×3+3×2−5x**, evaluate**d4ydx4d4ydx4

A. 42

B. 22

C. 30

D. 24

Answer to question 9 is D. 24

**Question 10 : Evaluate the limit**limx→∞2×4−x2+8x−5×4+7

A. 2/3

B. 3/4

C. 1/2

D. 1/3

Answer to question 10 is C. 1/2

I grantee you 7/10

THE END

## Be the first to comment